
Web Services for
“My Account” functions

By Mark Witteman
University of Virginia Library

Virgo: the UVA Library discovery platform
• “VIRGO” originally was the branded name for Sirsi’s “Webcat” OPAC

• The name was retained when we built our own discovery system
• Approximately 2005
• Built on Blacklight
• Many search sources

• Sirsi source came from catalogdump: MARC, callnum, item data

• Nightly update

• Used direct Oracle query for real-time availability (status of items)

A new version of Virgo
• “Version 4” is a total re-write

• 2019
• Ruby
• Locally written API based back-end
• Many search sources
• For Symphony catalog, use catalogdump to provide MARC, callnum,

item data

Symphony SaaS migration
• In 2018, before Virgo 4 work

• When local hosted, Virgo made direct connection to Symphony
Oracle tables for real-time availability

• Not allowed with the Oracle license offered to SaaS customers

• So Symphony Web Services instead!
• Needed to make the SWS methods work before SaaS migration

About the SWS requests…
• Question:

• Which SWS style?

• Answer:
• ROA, not RESTful

• First generation Symphony Web Services were RESTful

• One day support for RESTful style will end

• So we knew we wanted to use the newer style: ROA
• ROA = resource-oriented architecture

Initial sign-in
UVA users use UVA’s SSO
“Netbadge”.

Others use Library ID and
Password stored in Symphony.

Initial sign-in: the SWS request
• We use UVA’s single sign-on platform for students, faculty, staff
• For community (non-UVA) patrons, we use SWS

URI =
/user/patron/authenticate

Request payload =
{"alternateID":"RNE123","password":"<* REDACTED *>"}

• Name & address from
SWS for community
users; from NetBadge
for UVA users

• Password change (PIN
in Symphony) for
community borrowers
only

• UVA users change
password in UVA’s
“Netbadge system”

• Bills on main My
Information page.

• Different advice on
paying bills for UVA vs.
community users

“My Information”

My Information: the SWS request
/user/patron/search?

q=ALT_ID:$uva_computing_service_id

&includeFields=barcode,

primaryAddress{emailAddress},

displayName,

profile{description},

patronStatusInfo{standing,amountOwed},

library

Getting outstanding bills: SWS request
/rest/patron/lookupPatronInfo

?alternateID=$uva_computing_service_id

&json=true

&includeFeeInfo=UNPAID_FEES
This is actually a
RESTful request.

Will change to ROA
one day … soonish?

• Sort options

• Overdues and
recalled checkouts
are highlighted

• Renew one or renew
all (“Renew All” button
at top of list)

• Failed renewal
displays error from
SWS response

Checkouts

Getting checkouts: the SWS request
/user/patron/search?

q=ALT_ID:$uva_computing_service_id

&json=true

&includeFields=circRecordList{dueDate,

overdue,estimatedOverdueAmount,recalledDate,

renewalDate,library{description},

item{barcode,call{dispCallNumber},

bib{key,author,title}}}

Renewals
For each renewal:

/circulation/circRecord/renew

With this message body:
{ "itemBarcode": “$item_barcode" }

• “Requests” tab
shows Symphony
holds

• List and delete
holds

• Below UVA Holds
are “ILL requests”

• Virgo also uses
ILLiad API!

• Virgo also uses
Aeon API (Special
Collections
requests)

Holds

Holds: the SWS request
/user/patron/search?

q=ALT_ID:$uva_computing_service_id

&json=true

&includeFields=holdRecordList

{*,bib{title,author},

item{barcode,currentLocation,library,

transit{transitReason},

call{dispCallNumber}}}

Delete hold
•A simple ROA request:

/circulation/holdRecord/key/#{hold_key}

In theory, getting patron info could all be
done in one SWS request:
• Get all components in one SWS request:

• User information (name, address, user library, user profile)
• List of checkouts, list of outstanding bills, list of active holds

• I think it would be more efficient

• Currently discussing with the UVA Library “Virgo Team”

/user/patron/search?

q=ALT_ID:$uva_computing_service_id

&json=true

&includeFields=

barcode,primaryAddress{emailAddress},

displayName,profile{description},

patronStatusInfo{standing,amountOwed},library,

circRecordList{dueDate,

overdue,estimatedOverdueAmount,recalledDate,

renewalDate,library{description},

item{barcode,call{dispCallNumber},

bib{key,author,title}}},

holdRecordList

{pickupLibrary,placedDate,status,

bib{title,author},

item{barcode,currentLocation,library,transit

{transitReason,transitDate,destinationLibrary,

holdRecord},

call{dispCallNumber}}},

blocklist{createDate,amount,owed,

block,library,billDate,

callNumber,title}

Initial user info

Checkouts

Outstanding bills

Holds

In conclusion
• Learning to use SWS has been challenging (for me) but

rewarding

• I am slowly gaining facility with SWS

